Skip to main content
Log in

Surface-enhanced Raman spectroscopy (SERS) investigations of saliva for oral cancer diagnosis

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Saliva could be an optimal sample for non-invasive cancer detection, as it contains plenty of proteins and metabolites which can reflect the health status of an individual. Moreover, pairing it with high-sensitivity, label-free detection techniques could prove successful for early cancer diagnosis. In this study, we explore the enhancement of salivary characteristic Raman bands by using label-free, ultrasensitive surface-enhanced Raman scattering (SERS) based on gold nanoparticles. SERS maps were acquired from dry samples of saliva supernatant mixed with Au colloidal nanoparticles, which was then pipetted on clean glass slides. The SERS spectra presented a high variability of signal intensities and frequency shifts. However, several reproducible SERS spectra showing well-resolved bands were obtained at certain locations on the maps, where Au nanoparticles clustered together during the air-drying. The healthy and oral cancer saliva could be differentiated using principal components analysis based on several SERS bands assigned mainly to amino acids and proteins. Moreover, thiocyanate Raman modes were detected in saliva samples of both smoking and non-smoking volunteers and cancer patients. The analysis indicated that the cancer group displayed an overall higher level of the 2126 cm−1 band area assigned to C–N stretching vibrations of thiocyanate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Warnakulasuriya S (2009) Global epidemiology of oral and oropharyngeal cancer. Oral Oncol 45:309–316. https://doi.org/10.1016/j.oraloncology.2008.06.002

    Article  PubMed  Google Scholar 

  2. Kah JCY, Kho KW, Lee CGL, Richard CJ (2007) Early diagnosis of oral cancer based on the surface plasmon resonance of gold nanoparticles. Int J Nanomedicine 2:785–798

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kong K, Kendall C, Stone N, Notingher I (2015) Raman spectroscopy for medical diagnostics — from in-vitro biofluid assays to in-vivo cancer detection. Adv Drug Deliv Rev 89:121–134. https://doi.org/10.1016/j.addr.2015.03.009

    Article  CAS  PubMed  Google Scholar 

  4. (2005) Frontmatter. In: Raman spectroscopy for chemical analysis. John Wiley & Sons, Inc, Hoboken, pp i–xxiv

  5. Feng S, Chen R, Lin J et al (2010) Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis. Biosens Bioelectron 25:2414–2419. https://doi.org/10.1016/j.bios.2010.03.033

    Article  CAS  PubMed  Google Scholar 

  6. Tu Q, Chang C (2012) Diagnostic applications of Raman spectroscopy. Nanomedicine 8:545–558. https://doi.org/10.1016/j.nano.2011.09.013

    Article  CAS  PubMed  Google Scholar 

  7. Moskovits M (2005) Surface-enhanced Raman spectroscopy: a brief retrospective. J Raman Spectrosc 36:485–496. https://doi.org/10.1002/jrs.1362

    Article  CAS  Google Scholar 

  8. Schlücker S (2009) SERS microscopy: nanoparticle probes and biomedical applications. ChemPhysChem 10:1344–1354. https://doi.org/10.1002/cphc.200900119

    Article  CAS  PubMed  Google Scholar 

  9. Kneipp J, Kneipp H, McLaughlin M et al (2006) In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. Nano Lett 6:2225–2231. https://doi.org/10.1021/nl061517x

    Article  CAS  PubMed  Google Scholar 

  10. Cinta Pinzaru S, Falamas A, Dehelean CA (2013) Molecular conformation changes along the malignancy revealed by optical nanosensors. J Cell Mol Med 17:277–286. https://doi.org/10.1111/jcmm.12006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Simon I, Hedesiu M, Virag P et al (2019) Raman micro-spectroscopy of dental pulp stem cells: an approach to monitor the effects of cone beam computed tomography low-dose ionizing radiation. Anal Lett 52:1097–1111. https://doi.org/10.1080/00032719.2018.1516771

    Article  CAS  Google Scholar 

  12. Cialla-May D, Zheng X-S, Weber K, Popp J (2017) Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics. Chem Soc Rev 46:3945–3961. https://doi.org/10.1039/C7CS00172J

    Article  CAS  PubMed  Google Scholar 

  13. Falamas A, Dehelean CA, Cinta Pinzaru S (2018) Monitoring of betulin nanoemulsion treatment and molecular changes in mouse skin cancer using surface enhanced Raman spectroscopy. Vib Spectrosc 95:44–50. https://doi.org/10.1016/j.vibspec.2018.01.004

    Article  CAS  Google Scholar 

  14. Yoshizawa JM, Schafer CA, Schafer JJ et al (2013) Salivary biomarkers: toward future clinical and diagnostic utilities. Clin Microbiol Rev 26:781–791. https://doi.org/10.1128/CMR.00021-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bano S, David MP, Indira A (2015) Salivary biomarkers for oral squamous cell carcinoma: an overview. IJSS Case Rep Rev 1:39–45

    Google Scholar 

  16. Hu S, Arellano M, Boontheung P et al (2008) Salivary proteomics for oral cancer biomarker discovery. Clin Cancer Res 14:6246–6252. https://doi.org/10.1158/1078-0432.CCR-07-5037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang S, Qin Y, Zou Z (2016) Determination of liver cancer biomarkers by surface-enhanced Raman scattering using gold-silica nanoparticles. Anal Lett 49:1209–1220. https://doi.org/10.1080/00032719.2015.1098656

    Article  CAS  Google Scholar 

  18. Cheng Y-S, Rees T, Wright J (2014) A review of research on salivary biomarkers for oral cancer detection. Clin Translat Med 3:3. https://doi.org/10.1186/2001-1326-3-3

    Article  Google Scholar 

  19. Zhang C-Z, Cheng X-Q, Li J-Y et al (2016) Saliva in the diagnosis of diseases. Int J Oral Sci 8:133–137. https://doi.org/10.1038/ijos.2016.38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Qiu S, Xu Y, Huang L et al (2016) Non-invasive detection of nasopharyngeal carcinoma using saliva surface-enhanced Raman spectroscopy. Oncol Lett 11:884–890. https://doi.org/10.3892/ol.2015.3969

    Article  CAS  PubMed  Google Scholar 

  21. Connolly JM, Davies K, Kazakeviciute A et al (2016) Non-invasive and label-free detection of oral squamous cell carcinoma using saliva surface-enhanced Raman spectroscopy and multivariate analysis. Nanomedicine 12:1593–1601. https://doi.org/10.1016/j.nano.2016.02.021

    Article  CAS  PubMed  Google Scholar 

  22. Li X (2012) Spectral analysis of human saliva for detection of lung cancer using surface-enhanced Raman spectroscopy. J Biomed Opt 17:037003. https://doi.org/10.1117/1.JBO.17.3.037003

    Article  CAS  PubMed  Google Scholar 

  23. Stefancu A, Badarinza M, Moisoiu V et al (2019) SERS-based liquid biopsy of saliva and serum from patients with Sjögren’s syndrome. Anal Bioanal Chem. https://doi.org/10.1007/s00216-019-01969-x

  24. Feng S, Huang S, Lin D et al (2015) Surface-enhanced Raman spectroscopy of saliva proteins for the noninvasive differentiation of benign and malignant breast tumors. Int J Nanomedicine 10:537–547. https://doi.org/10.2147/IJN.S71811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Feng S, Lin D, Lin J et al (2014) Saliva analysis combining membrane protein purification with surface-enhanced Raman spectroscopy for nasopharyngeal cancer detection. Appl Phys Lett 104:073702. https://doi.org/10.1063/1.4866027

    Article  CAS  Google Scholar 

  26. Hernández-Arteaga A, de Jesús Zermeño Nava J, Kolosovas-Machuca ES et al (2017) Diagnosis of breast cancer by analysis of sialic acid concentrations in human saliva by surface-enhanced Raman spectroscopy of silver nanoparticles. Nano Res 10:3662–3670. https://doi.org/10.1007/s12274-017-1576-5

    Article  CAS  Google Scholar 

  27. Movasaghi Z, Rehman S, Rehman IU (2007) Raman spectroscopy of biological tissues. Appl Spectrosc Rev 42:493–541. https://doi.org/10.1080/05704920701551530

    Article  CAS  Google Scholar 

  28. Vargas-Obieta E, Martínez-Espinosa JC, Martínez-Zerega BE et al (2016) Breast cancer detection based on serum sample surface enhanced Raman spectroscopy. Lasers Med Sci 31:1317–1324. https://doi.org/10.1007/s10103-016-1976-x

    Article  PubMed  Google Scholar 

  29. Danciu C, Falamas A, Dehelean C et al (2013) A characterization of four B16 murine melanoma cell sublines molecular fingerprint and proliferation behavior. Cancer Cell Int 13:75. https://doi.org/10.1186/1475-2867-13-75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tsuge K, Kataoka M, Seto Y (2000) Cyanide and thiocyanate levels in blood and saliva of healthy adult volunteers. J Health Sci 46:343–350. https://doi.org/10.1248/jhs.46.343

    Article  CAS  Google Scholar 

  31. Yang Q, Liang F, Wang D et al (2014) Simultaneous determination of thiocyanate ion and melamine in milk and milk powder using surface-enhanced Raman spectroscopy. Anal Methods 6:8388–8395. https://doi.org/10.1039/C4AY00965G

    Article  CAS  Google Scholar 

  32. Wu L, Wang Z, Zong S, Cui Y (2014) Rapid and reproducible analysis of thiocyanate in real human serum and saliva using a droplet SERS-microfluidic chip. Biosens Bioelectron 62:13–18. https://doi.org/10.1016/j.bios.2014.06.026

    Article  CAS  PubMed  Google Scholar 

  33. Wang P, Li H, Cui C, Jiang J (2019) In situ surface-enhanced Raman spectroscopy study of thiocyanate ions adsorbed on silver nanoparticles under high pressure. Chem Phys 516:1–5. https://doi.org/10.1016/j.chemphys.2018.08.029

    Article  CAS  Google Scholar 

  34. Feng Y, Mo R, Wang L et al (2019) Surface enhanced Raman spectroscopy detection of sodium thiocyanate in milk based on the aggregation of Ag nanoparticles. Sensors 19:1363. https://doi.org/10.3390/s19061363

    Article  CAS  Google Scholar 

  35. Shiue I (2015) Urinary thiocyanate concentrations are associated with adult cancer and lung problems: US NHANES, 2009–2012. Environ Sci Pollut Res 22:5952–5960. https://doi.org/10.1007/s11356-014-3777-8

    Article  CAS  Google Scholar 

  36. Bonnier F, Byrne HJ (2012) Understanding the molecular information contained in principal component analysis of vibrational spectra of biological systems. Analyst 137:322–332. https://doi.org/10.1039/C1AN15821J

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

A.F. wishes to acknowledge the access in the Raman Laboratory at the Physics Faculty, “Babes-Bolyai” University.

Funding

This work was supported by CNCS-UEFISCDI, under Grant project number PN-III-P1-1.1-PD-2016-1057.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Fălămaș.

Ethics declarations

Disclaimer

This funding source had no role in the design of this study and will not have any role during its execution, analyses, interpretation of the data, or decision to submit results.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in this study were in accordance with the ethical standards of “Iuliu-Hateganu” University of Medicine and Pharmacy in Cluj-Napoca, Romania and with the 1964 Helsinki declaration and its later amendments.

Informed consent

Informed consent was obtained from all patients included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fălămaș, A., Rotaru, H. & Hedeșiu, M. Surface-enhanced Raman spectroscopy (SERS) investigations of saliva for oral cancer diagnosis. Lasers Med Sci 35, 1393–1401 (2020). https://doi.org/10.1007/s10103-020-02988-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-020-02988-2

Keywords

Navigation